Improved Lower Bounds for Graph Embedding Problems
نویسندگان
چکیده
In this paper, we give new, tight subexponential lower bounds for a number of graph embedding problems. We introduce two related combinatorial problems, which we call String Crafting and Orthogonal Vector Crafting, and show that these cannot be solved in time 2o(|s|/ log |s|), unless the Exponential Time Hypothesis fails. These results are used to obtain simplified hardness results for several graph embedding problems, on more restricted graph classes than previously known: assuming the Exponential Time Hypothesis, there do not exist algorithms that run in 2 logn) time for Subgraph Isomorphism on graphs of pathwidth 1, Induced Subgraph Isomorphism on graphs of pathwidth 1, Graph Minor on graphs of pathwidth 1, Induced Graph Minor on graphs of pathwidth 1, Intervalizing 5-Colored Graphs on trees, and finding a tree or path decomposition with width at most c with a minimum number of bags, for any fixed c ≥ 16. 2 logn) appears to be the “correct” running time for many packing and embedding problems on restricted graph classes, and we think String Crafting and Orthogonal Vector Crafting form a useful framework for establishing lower bounds of this form.
منابع مشابه
Framework for ETH-tight Algorithms and Lower Bounds in Geometric Intersection Graphs
We give an algorithmic and lower-bound framework that facilitates the construction of subexponential algorithms and matching conditional complexity bounds. It can be applied to a wide range of geometric intersection graphs (intersections of similarly sized fat objects), yielding algorithms with running time 2 1−1/d) for any fixed dimension d ≥ 2 for many well known graph problems, including Ind...
متن کاملLower bounds on the signed (total) $k$-domination number
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملBounds on First Reformulated Zagreb Index of Graph
The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.
متن کامل